
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

1 Instructor: Daniel Llamocca

Solutions - Homework 3
(Due date: June 9th)

PROBLEM 1 (20 PTS)
▪ Performance Analysis: Iterative Integer Divider vs. Pipelined Integer Divider (N=M=16):

✓ Iterative Divider Operation: Input data (16-bit A, 16-bit B) is read when the s signal (a one-cycle pulse) is asserted.

After N+1=17 cycles, the result (16-bit Q, 16-bit R) is ready with done=1. Only after this, we can feed new data.

To process data as fast as possible, we must issue s=1 (with new data) right after done=1.

✓ Pipelined Divider Operation: The circuit reads input data (16-bit A, 16-bit B) when the enable (E) signal is asserted.

After a processing delay of N=16 cycles, the result (16-bit Q, 16-bit R) is ready and it is signaled by v=1. Unlike the

iterative divider, we can continuously feed data (with E=1).

To process data as fast as possible, we must keep E=1 (with new data) every clock cycle.

▪ An operation is defined as the computation of one input data set. The processing cycles for P operations is given by:

✓ Iterative Divider: It can compute P operations in P(N+2) cycles (1 operation is processed in N+1 cycles, but there is a

one cycle delay before we can start the next operation)

✓ Pipelined Divider: It can compute P operations in N + (P-1) cycles.

▪ In the following table, complete the number of processing cycles, processing times (us), and operations per second.

✓ Use TCLOCK = 8 ns (same as the PL_CLK = 125 MHz input clock in ZYBO or ZYBO Z7-10)

✓ The metric Operations per second is an average based on a given number of operations. Example: if a circuit can process

20 operations in 1 us, then we have
20 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

1 𝑢𝑠
 = 20 × 106 operations per second.

 Iterative Divider Pipelined Divider

P
Processing

cycles

Processing

Time (us)

Operations per

second

Processing

Cycles

Processing

Time (us)

Operations per

second

100 1800 14.4 6.944106 115 0.92 1.087108

1000 18000 144 6.944106 1015 8.12 1.231108

10000 180000 1440 6.944106 10015 80.12 1.248108

100000 1800000 14400 6.944106 100015 800.12 1.249108

▪ For the Iterative Divider: Is the Operations per second constant? Yes or No? Why?

The operations per cycle is given by
𝑃

(𝑁+2)𝑃
=

1

𝑁+2
. This is a constant if N is constant.

▪ For the Pipelined Divider: If P →:

✓ How many operations are computed per cycle?
𝑃

𝑁−1+𝑃
=

1
𝑁−1

𝑃
+1

|
𝑃→

= 1 operation per cycle.

✓ What is the Operations per second? 1 operation per cycle
1

8×10−9 = 1.25 × 108 operations per second

D17D16D1D0

clock

s

done

...

...
Processing C y cles=N+1

E

v ...
Latency = N cy cles

...

...

clock ...
DI ...

Q17Q16Q1Q0DO ...

...

...

D1D0DI D2...

Q1Q0DO ...

It
e
ra

ti
v
e

D
iv

id
e
r

P
ip

e
lin

e
d

D
iv

id
e
r DI = |A|B|

DO = |Q|R|

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

2 Instructor: Daniel Llamocca

PROBLEM 2 (15 PTS)
▪ The figure shows the 2D DCT IP AXI4-Full Peripheral. It includes a Reconfigurable Partition (RP). For this particular PR

implementation, we allow for N to be run-time reconfigurable (N=4,8,16), while we fix the parameters B=NO=8.

▪ The input and output of the 2D DCT IP require more than 32 bits when N = 8, 16. This requires an Input interface to the

iFIFO and an Output interface to the oFIFO. The figure shows the different interfaces for each N (4, 8, 16) when B=NO=8.

As the FSM @ CLK_FX controls data flow from the input and the output, it depends on N.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

2D DCT IP

E v

X

In
pu

t I
nt

er
fa

ce
rst

...

Output
Buf f er

8
x

N

N
8

x
N

O
ut

pu
t I

nt
er

fa
ce

Y

irden

owren

32 32

N

S_AXI_ARESETN

PR_reset

RP

B=NO=8

3
2

3
2

3
2

3
2

3
2Y

2D DCT IP

E v

X

DCT 4x4
B=NO=8

rst

DODI

Eri

3
2

6
4

DI

Y

2D DCT IP

E v

X

DCT 8x8
B=NO=8

rst

1
2
8

Y

2D DCT IP

E v

X

DCT 16x16
B=8,NO=8

rst

Eri

2

1

0

3
2

3
2

3
2

DI

6
4

s

3
2

3
2

0

1

3
2

DO...

Output Buf f er

6
4

3
2

1
2
8

s

3
2

3
2

0

1

2

3

3
2

DO

2

3
2

...

Output Buf f er

1
2
8

E
_

b
u

f

E
_
b
u
f

8

16

N=4 N=8

N=16

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2022

3 Instructor: Daniel Llamocca

▪ We want to build a dynamically reconfigurable system, where we can change N (4, 8, 16) at run-time:

✓ The RP (Reconfigurable Partition) is depicted in the figure. The Output Buffer, the Input interface and the output interface

to FIFOs, as well as the FSM @ CLK_FX are included in the RP. Why is this necessary?

The RP variations depend on N. When the parameter N changes, the input and output interfaces to FIFO change as well.
The FSM @ CLK_FX is also dependent on N as it needs to know how much data is being transferred.

✓ Signal rst: Active-high signal generated by the FSM @ S_AXI_ACLK. It resets the 2D DCT IP, the red FSM, and the FIFOs.

Why is this signal important? Do we assert this signal before or after performing DPR? Why?

During DPR, the RP outputs toggle erratically and can write spurious data onto oFIFO. Also, the FFs of the RP are not
cleared after DPR. So, we need to clear the RP FFs and the oFIFO. We do this via the rst signal.

✓ The RP outputs toggle during DPR. What could happen to the contents of oFIFO during DPR?

Spurious data could be written onto oFIFO during DPR, as owren is an output of the RP.

PROBLEM 3 (65 PTS)
▪ Attach your Project Status Report (no more than 1 page, single-spaced, 2 columns, only one submission per group). This

report should contain the current status of your project. For formatting, use the provided template (Final Project –

Report Template.docx). The sections included in the template are the ones required in your Final Report. At this stage,

you are only required to:
✓ Include a project description.
✓ Specify a (tentative) allocation of tasks in: i) software routine, and ii) reconfigurable hardware.

 If you plan to use run-time alterable hardware, indicate what tasks it will be doing.
✓ Hardware Architecture: Include a Draft Block Diagram with (tentative) I/O description and I/O mechanism.

▪ As a guideline, a generic hardware/software partitioning of an application is depicted. The figure shows the tasks performed

by the software routine and the PS peripherals we plan to use. It also shows a Block Diagram of the Hardware with generic
I/Os. The Reconfigurable Partition (RP) is also depicted. Note that this hardware uses external I/Os to the PL.

Software Application:
Reads data from SD card
Sends data to AXI Peripheral
Retrieves data from AXI Peripheral
Write data on SD crad

A
X
I
in

te
rf

a
c
e

Hardware
IP

PS PL

ARM

memory
controller

SD
ctrl

UART

In
p

u
ts

O
u

tp
u

ts

...

...

RP

Block Diagram

	Problem 1 (20 pts)
	Problem 2 (15 pts)
	Problem 3 (65 pts)

